
Please do not remove this page

Multi-agent Q-learning with particle filtering for
UAV tracking in Open-RAN environment
Soleymani, Seyed Ahmad; Goudarzi, Shidrokh; Xiao, Pei; Mihaylova, Lyudmila; Shojafar, Mohammad;
Wang, Wenwu
https://openresearch.surrey.ac.uk/esploro/outputs/journalArticle/Multi-agent-Q-learning-with-particle-filtering-for/99979066002346/filesAndLinks?ind
ex=0

Soleymani, S. A., Goudarzi, S., Xiao, P., Mihaylova, L., Shojafar, M., & Wang, W. (2025). Multi-agent
Q-learning with particle filtering for UAV tracking in Open-RAN environment. IEEE Transactions on
Aerospace and Electronic Systems, 61(4), 10439–10458. https://doi.org/10.1109/TAES.2025.3559518

Published Version: https://doi.org/10.1109/TAES.2025.3559518

Document Version: Author's Accepted Manuscript

Downloaded On 2026/01/04 21:43:42 +0000
Research:Open
CC BY V4.0
openresearch@surrey.ac.uk
Surrey Open Research repository homepage: https://openresearch.surrey.ac.uk/esploro/

https://openresearch.surrey.ac.uk/esploro/outputs/journalArticle/Multi-agent-Q-learning-with-particle-filtering-for/99979066002346/filesAndLinks?index=0
https://openresearch.surrey.ac.uk/esploro/outputs/journalArticle/Multi-agent-Q-learning-with-particle-filtering-for/99979066002346
http://doi.org/doi:https://doi.org/10.1109/TAES.2025.3559518
https://openresearch.surrey.ac.uk/esploro/

Multi-agent Q-learning with
Particle Filtering for UAV
Tracking in Open-RAN
Environment

Seyed Ahmad Soleymani, Fellow, IEEE
University of Surrey, Guildford, UK.

Shidrokh Goudarzi, Member, IEEE
University of West London, London, UK.

Pei Xiao,, Senior Member, IEEE
University of Surrey, Guildford, UK.

Lyudmila Mihaylova, Senior Member, IEEE
University of Sheffield, UK.

Mohammad Shojafar, Senior Member, IEEE
University of Surrey, Guildford, UK.

Wenwu Wang, Senior Member, IEEE
University of Surrey, Guildford, UK.

Abstract—This paper introduces a method for target tracking
that leverages mobile sensor nodes and Unmanned Aerial Vehicles
(UAVs) within an Open- Radio Access Network (RAN) framework.
Open-RAN is a flexible and standardized architecture that allows
open and interoperable components in RANs, promoting efficiency
and adaptability. The core methodology involves improving the
accuracy and energy consumption tracking in urban areas filled
with obstacles and dynamic conditions. Mobile sensor nodes use a
particle filtering algorithm to detect and estimate target positions,
and this information is relayed to nearby Evolved/Next Generation
Node Bs (e/gNBs), which function as the radio access network
infrastructure. The e/gNBs manage clusters of UAVs using a
specialized xApp integrated into the near-real-time RAN Intelligent
Controller (RIC). The UAVs utilize a comprehensive tracking
strategy based on received signal strength (RSS), a trilateration
algorithm, and an enhanced multi agent Q-learning algorithm
(eMAQL). This approach enables UAVs to optimize their flight paths
while balancing accuracy, power usage, and communication delays.

S.A. Soleymani, P. Xiao, M. Shojafar are with the
Institute for Communication Systems (5GIC), Univer-
sity of Surrey, Guildford, GU2 7XH, UK. (e-mail:
s.soleymani@surrey.ac.uk;p.xiao@surrey.ac.uk;m.shojafar@surrey.ac.uk).
S. Goudarzi is with the School of Computing and Engineering,
University of West London, London W5 5RF, UK. (e-mail:
shidrokh.goudarzi@uwl.ac.uk). L. Mihaylova is with the Department
of Automatic Control and Systems Engineering, The University of
Sheffield, UK. (e-mail: l.s.mihaylova@sheffield.ac.uk). W. Wang
is with the Centre for Vision, Speech and Signal Processing
(CVSSP), University of Surrey, Guildford, GU2 7XH, UK. (e-mail:
w.wang@surrey.ac.uk).

0018-9251 © IEEE

The experimental results show that the system achieves optimal
performance with eight discrete actions for eMAQL, with UAVs
consuming an average of 90 (watts) of power and maintaining a
root mean square error (RMSE) of less than 0.5 (meters) for target
position estimation. These results highlight the system’s effectiveness
in providing precise and energy-efficient tracking in complex urban
environments.

Index Terms—Target Tracking, UAV, Q-Learning, Particle Fil-
tering, RSS, Open-RAN, Accuracy, Power Consumption, Delay.

I. INTRODUCTION

Cooperative sensing is a collaborative approach in
which multiple sensing entities, such as UAVs, work
together to achieve a common sensing goal by sharing
resources, information and processing capabilities. This
approach improves accuracy, coverage, and reliability
compared to individual sensors operating in isolation.
In UAV networks, cooperative sensing has emerged as
a promising technique to gather and share information,
enabling improved performance in applications such as
surveillance, environmental monitoring, and object detec-
tion [1]. UAVs have revolutionized various industries by
offering versatile and cost-effective solutions, particularly
in tracking targets for ground-based environments. Their
ability to autonomously monitor above targets improves
situational awareness and enables efficient decision mak-
ing in domains such as search and rescue, infrastructure
inspection, and security operations [2].

UAV-based target tracking involves the utilization
of UAVs equipped with camera, radio frequency (RF)
sensors, and advanced algorithms, to detect, locate, and
track moving targets. In this setup, the camera component
is leveraged for target detection and tracking purposes,
while RF sensors are used for navigation and localization
tasks [3]. By combining the capabilities of these sensor
types, UAVs can effectively monitor and pursue dynamic
targets, enabling a comprehensive and versatile approach
to target tracking in diverse scenarios. Using their aerial
perspective, UAVs can overcome many limitations of
traditional ground-based tracking systems, such as line-
of-sight obstructions and limited coverage.

However, despite the notable progress achieved in
UAV-based target tracking, there remain several persistent
challenges that have impeded the development of robust
and efficient tracking systems, particularly in ground-
based environments. These challenges are a result of both
the limitations of UAVs and the inherent complexities
involved in tracking dynamic targets on the ground,
including vehicles and pedestrians.

In challenging urban environments, the performance
of UAV-based target tracking systems can be signifi-
cantly compromised due to the presence of obstacles
that obstruct the signal reception by the UAVs. This
obstacle-induced signal loss adversely affects the track-
ing process, leading to missed detection and inaccuracy,
thereby reducing the overall effectiveness of the system
[4], [5]. This challenge becomes more highlighted when
employing location estimation techniques such as time-

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. , No. 1

of-arrival (TOA), angle-of-arrival (AOA), and received
signal strength (RSS) in target tracking systems. As ex-
plained in [6], the propagation of the signal involves two
primary factors: path loss model parameters and signal
transmission power. Obtaining access to these parameters
in challenging and unfamiliar environments such as urban
areas can prove to be a formidable task. Thus, accurately
estimating target location and achieving robust target
tracking in complex urban environments become even
more challenging due to the scarcity of essential signal
propagation parameters in unfamiliar territories.

The limitation of power capacity and power ineffi-
ciency also poses a substantial challenge in the realm of
UAVs [7]. UAVs inherently operate with finite battery
power, and prolonged tracking operations can rapidly
deplete their power reserves. Inefficient power consump-
tion strategies further exacerbate this problem, resulting
in reduced mission durations, frequent requirements for
recharging or battery replacement, and increased opera-
tional costs. Addressing these challenges becomes crucial
for improving the overall effectiveness and sustainability
of UAV-based tracking systems.

In real-time target tracking, delay poses another sig-
nificant challenge [8]. The timely decision-making and
response are compromised when delays occur in detecting
and updating target positions. These delays can result
from factors such as communication latency, processing
time, and inefficient coordination between the entities of
the tracking system, all of which can hinder the system’s
ability to respond effectively. Communication delays oc-
cur due to the time required for the information to travel
between the UAVs and other network components, includ-
ing the ground sensor nodes and base stations. Process-
ing time refers to computational delays incurred during
data processing, target position estimation, and decision
making. Inefficiencies in coordination can result from
suboptimal task allocation, communication protocols, or
synchronization mechanisms among entities. These delays
collectively impact the real-time nature of the tracking
system, potentially compromising its effectiveness in dy-
namic scenarios where prompt responses are crucial.

Furthermore, ensuring precise estimation of target
position and, consequently, achieving accurate tracking
represent critical challenges in the field of target tracking
[9]. Precise prediction of the future movements of targets
is essential for maintaining effective tracking, especially
when dealing with high-speed targets or intricate maneu-
vers. Moreover, the presence of obstacles like buildings
and trees can obstruct the UAV’s line of sight, resulting
in incomplete or imprecise target observations. Several
factors, including sensor noise, uncertainties in target
behavior, obstructions, and complex surroundings, signif-
icantly impact the precision of the estimate of the target’s
position. Consequently, these factors further complicate
the task of tracking specific targets.

Motivated by the challenges encountered in tracking
targets with multiple UAVs in urban environments, this
paper introduces a robust approach to address these is-

sues. Our strategy involves designing a comprehensive
system model that integrates mobile sensor nodes (SNs),
Evolved/Next Generation NodeBs (e/gNBs) as part of
the Radio Access Network (RAN) on the ground, and
UAVs, leveraging the principles of the Open Radio Access
Network (Open-RAN). The Open-RAN is chosen for its
flexibility and open standards, which facilitate efficient
communication and coordination between UAVs and net-
work components. This model aims to improve target
tracking accuracy, optimize power efficiency, and improve
real-time performance. We focus on maximizing tracking
accuracy, reducing update delays, and minimizing UAV
power consumption. Furthermore, considering the pres-
ence of urban obstacles, such as buildings, our approach
highlights the need for effective collision avoidance strate-
gies. By leveraging Open-RAN’s capabilities, we seek to
address these challenges and improve the overall tracking
performance while conserving UAV resources.

To explore these trade-offs and meet the objectives,
our approach integrates a range of advanced algorithms
and techniques, including particle filtering (PF), Q-
learning, clustering, multilateration, normalization, and
a path planning algorithm. The PF algorithm enhances
target position estimation accuracy, while multi-lateration
provides precise target localization using RSS infor-
mation. The Q-learning algorithm allows UAVs to in-
telligently select optimal flight directions taking into
account accuracy, delay, and power consumption. To
further optimize UAV performance, we incorporate a
path planning algorithm to determine the best route for
UAVs to approach and track the target effectively. Clus-
tering techniques facilitate coordination among UAVs,
improving overall tracking efficiency. As described in
[10], the clustering technique (central network) performs
better in terms of power consumption. In our multi-
criteria decision-making process, we employ Min-Max
normalization to standardize diverse ranges of accuracy,
delay, and power values, ensuring fair and balanced
evaluation. This normalization method enables an effec-
tive comparison of various criteria, facilitating informed
decision-making. By integrating advanced algorithms and
techniques and using Open-RAN for improved commu-
nication, the challenges of tracking the target in urban
environments are addressed, improving both the tracking
performance and the efficiency of resources.

Through the integration of these advanced algorithms,
our approach seeks to revolutionize target tracking sys-
tems and improve their accuracy, power efficiency, and
real-time performance in ground-based scenarios. The
main contributions of this study are given below.

1- Developing a PF-based localization algorithm utiliz-
ing RSS to estimate the position of a moving target,
improving tracking accuracy and reliability through
collaboration among mobile sensor nodes.

2- Developing a multi-agent Q-learning algorithm for
UAV swarm tracking, focusing on real-time perfor-
mance, accuracy, power efficiency, and avoidance of

2 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. , No.

obstacles collisions, optimizing decision-making and
navigation.

3- Developing an offloading strategy is introduced to
address UAV power limitations considering priority,
computation time, transmission delay, and queueing de-
lay, to ensure efficient resource allocation and optimal
tracking performance.
The remainder of this paper is organized as follows.

Section II provides an overview of the related work
on cooperative sensing and target tracking using UAVs.
Section III presents the system model and formulation
of the power, delay, and accuracy trade-offs. Section
IV provides the formulation of the problem. Section
V details the proposed cooperative sensing framework,
including collaboration strategies and resource allocation
techniques. Section VI presents the experimental setup
and discusses the obtained results. Finally, Section VII
concludes the paper and highlights future research direc-
tions in the field of cooperative sensing with multi-UAVs
for target tracking.

II. Related Work

In recent years, the deployment of multiple UAVs has
emerged as a promising approach to tackle the challenges
associated with target tracking and search operations.
Various studies have explored different methodologies to
improve the performance of multi-UAV systems in these
domains. For example, in [11] an online reinforcement
learning algorithm is introduced that simultaneously ad-
dresses target tracking while considering energy refueling
needs, showcasing a novel way to optimize UAV opera-
tions under energy constraints.

In [12], a structured learning-based graph matching
method is developed specifically for tracking applications.
This method is divided into two layers, effectively ad-
dressing both non-stationary issues and routing problems,
thereby improving the reliability of tracking in complex
environments. In [13] a mixture model is proposed that re-
fines prior probability distributions, aiding UAVs to main-
tain effective tracking despite environmental fluctuations.
In [14] a dynamic labor distribution-based ant colony
algorithm is used that demonstrated a high level of self-
organization. This approach allows for rapid responses
and flexibility when navigating dynamic environments,
showcasing the potential of bioinspired algorithms in
enhancing multi-UAV tracking systems.

In [15], an autonomous UAV swarm system is intro-
duced to track mobile RF targets using omnidirectional
RSS sensors. To handle dynamic channel conditions such
as varying transmission power, the flight decision process
was modeled as a constrained Markov decision process
(CMDP). An enhanced multi-agent reinforcement learn-
ing (MARL) algorithm was proposed to coordinate the
UAVs, reducing redundant paths and improving tracking
accuracy. Simulations showed that the approach outper-
forms standard Q-learning in terms of search time and
localization success.

In [16], an efficient Vision Transformer (ViT)-based
framework, TATrack, has been proposed for real-time
UAV tracking. This framework combines feature learning
and template-search coupling within a one-stream ViT
model, avoiding the need for an additional relation mod-
eling module. They introduced a method to maximize
mutual information (MI) between the template image
and its feature representation. Furthermore, a novel MI-
based knowledge distillation technique was introduced to
balance accuracy and efficiency. Extensive evaluations of
five benchmarks demonstrate that TATrack achieves state-
of-the-art performance in UAV tracking tasks.

III. Preliminaries

Here, we define the entities involved in the proposed
scheme, as well as the threat models and security require-
ments and goals that we aim to achieve.

A. System Model

The proposed cooperative sensing framework for tar-
get tracking involves creating a comprehensive system
model that ensures accurate and efficient tracking. This
model integrates various entities, each playing a vital
role in the tracking process. These entities include Target
Nodes (TNs), Sensor Nodes (SNs), e/gNBs, and UAVs.
In addition, we leverage the Open-RAN architecture to
improve network coordination and communication effi-
ciency.

In this framework, TNs are the moving entities on
the ground that need to be tracked, such as vehicles,
pedestrians, or other mobile objects. SNs are strategically
deployed to detect TNs and estimate their positions using
techniques such as RSS and PF. These SNs provide the
initial position estimates needed for accurate tracking. Un-
like static deployments, the SNs in our model are mobile,
allowing them to adjust their positions dynamically to im-
prove detection accuracy and coverage. Their movement
is optimized to maintain an effective sensing range while
minimizing localization errors, ensuring more precise
and reliable target tracking. To facilitate communication
between SNs and UAVs, e/gNBs are deployed throughout
the environment, and each e/gNB manages a specific area.
In the Open-RAN architecture, e/gNBs are intelligently
managed by the RAN Intelligent Controller (RIC), which
optimizes network performance and coordination between
various elements [17]. The RIC operates in both near-
real-time (near-RT) and non-real-time (non-RT) modes,
handling tasks like resource management and interference
mitigation, while also enabling long-term optimizations.
In this system, the near-RT RIC coordinates UAV clusters
through specialized applications (xApps), allowing real-
time adjustments to UAV flight paths and communication
strategies. The e/gNBs receive target position data from
SNs and use selection algorithms to assign the most
suitable UAVs for tracking based on their proximity and
availability. Additionally, e/gNBs have detailed knowl-

Soleymani S.A. et al.: Target Tracking 3

e/gNB

RIC

UAV

TN SN

e/gNB

e/gNB

RIC

RIC

RIC

RIC

Figure 1: The system model designed within an Open-
RAN environment, where a RIC supports single/multiple
e/gNBs.

edge of obstacles in their areas. Given the limited mem-
ory capacity of UAVs, they obtain obstacle information
from e/gNBs as they move. When a UAV enters a new
area, it receives updated obstacle information from the
corresponding e/gNB, ensuring efficient memory use and
enabling UAVs to track targets effectively and safely.

UAVs, equipped with omnidirectional RSS sensors,
are crucial to the tracking process. The e/gNBs assign
UAVs to each target for localization and tracking, using
the RSS technique alongside the Q-Learning algorithm.
To ensure accurate target position estimation, at least
three UAVs are dedicated to each target. This setup
allows for improved localization precision and enhances
overall tracking effectiveness. The assigned UAVs work
collectively as a cluster with one head of the cluster
(CH), collaborating to track the target. By forming a
cluster, UAVs can leverage their combined capabilities
and effectively address challenges such as localization
accuracy, obstacle avoidance, and real-time tracking.

Figure 1 illustrates a schematic representation of the
system model in an urban environment, which includes
three UAVs, two e/gNBs, a TN represented by a red
vehicle, and additional vehicles that serve as SN.

In this system, it is assumed that there are multiple
targets, denoted m = 1, · · · ,M , with ground mobility
and a total of N UAVs, denoted agents that fly at
different altitudes. The location of the m-th RF target at
any given time t is indicated by TNm,t = (xm,t, ym,t).
The velocity of movement of the target is defined as
TNv

m,t = (vx,m,t, vy,m,t), representing the velocity of
the target along the x and y axes at time t. The time-
varying location of the n-th UAV at time t is also denoted
as Un,t = (ẋn,t, ẏn,t, żn,t), and its flight velocity is
defined as Uv

n,t = (v̇x,n,t, v̇y,n,t, v̇z,n,t). In our system,
each UAV is equipped with a range sensor that enables
it to measure the distance between itself and the TN m.
These distance measurements are continuously obtained

at every timestamp as the UAVs fly in the vicinity of the
ground targets. By incorporating range sensors into the
UAVs’ capabilities, we can gather precise and real-time
information about the distances between the UAVs and
the targets they are tracking. This distance measurement
data plays a crucial role in estimating the positions and
movements of the targets, allowing for effective target
tracking and localization by the UAV swarm. The classic
narrowband radio propagation path loss model provides
a non-linear equation that relates the RSS to the distance
for distance measurement based on location. The equation
can be expressed as follows [18]:

PLmn,d,t = PLmn,0 + 10 α log10 dmn,t + ηmn,t (1)

where dmn,t is the distance between TN m and UAV
n. ηmn,t is a Gaussian random variable representing log-
normal shadow fading effects in multipath environments,
PLmn,0 denotes the signal power loss in units of decibels
(dB) at a reference distance of 1 meter [18], while
PLmn,d represents the signal power loss at a distance
d ≥ 1 meter. α is the path loss exponent that determines
the rate at which signal power decreases with distance.
Here, PLmn,d,t = PTX,t − PRX,t can be measured by
the received and transmitted signal power PRX,t, PTX,t

at time t. PTX represents the target’s constant transmit
power, which is known to the UAVs [15], [19].

Given the presence of obstacles in the urban envi-
ronment, it is crucial to consider both LoS and NLoS
conditions when modeling path loss. To account for the
measurement noise, we model it as follows [20]:

ηmn,t ∼ νmn,t N
(
0, σ2

LoS

)
+(1− νmn,t) N

(
µNLoS , σ

2
NLoS

) (2)

where νmn reflects the probabilities of a direct, unob-
structed path between the UAV n and the TN m. The
characteristics of the LoS measurements are modeled by a
zero mean Gaussian distribution, denoted as N

(
0, σ2

LoS

)
,

where the variance is σ2
LoS . This implies that the LoS

measurements exhibit a symmetric distribution around
zero, with a spread determined by the variance. In con-
trast, the statistical profile of the NLoS measurements
is described by another Gaussian distribution, denoted
N

(
µNLoS , σ

2
NLoS

)
. This distribution has a mean µNLoS

and a variance σ2
NLoS . NLoS measurements capture the

effects of signal reflections, diffraction, and scattering
caused by obstacles in the environment. The mean and
variance of this distribution provide valuable information
on the average value and variability of the NLoS mea-
surements, respectively. By considering these statistical
profiles, we can better understand and characterize the
nature of the measurements obtained in both LoS and
NLoS scenarios. This information is crucial for develop-
ing accurate models and algorithms for target tracking and
localization using RSS measurements in complex urban
environments.

The parameter νmn plays a crucial role in determining
the probability of signal received by the UAV n from TN
m under the LoS condition. As mentioned in [15], νmn

4 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. , No.

is determined by the elevation angle θmn,t between UAV
n from TN m, at, and bt as follows:

νmn,t =
1

1 + ate−bt(θmn,t−at)
(3)

The parameters at and bt are used to quantify specific
characteristics of the urban environment at time t. at
represents the ratio of the structured area, which includes
buildings and other man-made structures, to the total land
area. It provides information on the extent of urbanization
and the density of structures in the environment. A higher
value of at indicates a higher concentration of built-up
areas compared to open spaces. On the other hand, bt
denotes the number of buildings per unit area of land.
It provides information about the building density within
the urban environment. A higher value of bt indicates
a greater concentration of buildings in a specific area,
signifying a more densely populated or urbanized region.
By incorporating these parameters into our analysis, we
can better understand the characteristics of the urban
environment, such as the level of urbanization and the
density of buildings. This information is essential for
studying various aspects, such as signal propagation,
obstacle avoidance, and overall system performance in
urban target tracking scenarios.

B. Integration of Particle Filtering Algorithm and RSS

The PF algorithm is a method used to estimate the
state of a system based on sequential observations. It
consists of several steps to iteratively update and refine
the estimate of the state of the system. The steps of the
PF algorithm are as follows [21]:
• Initialization: Initially, a set of particles is generated

from a prior distribution, representing possible target
positions at the initial time step. Each particle is as-
signed an equal weight.

• Prediction: At each time step, the particles are propa-
gated according to a motion model that describes the
expected movement of the target. This prediction step
updates the positions of the particles based on the
motion model.

• Update: The weights of the particles are updated on the
basis of the observed measurement at the current time
step.

• Resampling: After the weights are updated, resampling
is performed to select particles for the next iteration.
Particles with higher weights have a higher chance of
being selected, while particles with lower weights are
less likely to be chosen. This resampling step helps
maintain a diverse set of particles and focuses the
estimation on regions with higher likelihoods.
The integration of the PF algorithm with RSS mea-

surements provides a significant improvement in the ac-
curacy and reliability of the estimation of the position
of the target [22]. This integration involves incorporating
additional information from RSS measurements into the
PF algorithm. In this integration, various notation is

considered. The state of the system is represented by the
true position of the target at a given time, denoted as xt,
where t represents the time step. The observation at each
time step is the RSS measurement, denoted as zt. The PF
algorithm uses particles, where each particle i represents
a hypothesis or possible location of the target, denoted
xi
t. Finally, the weight associated with each particle i is

calculated to represent the probability that the particle is
the true target position, denoted as wi

t.
In this integration, the RSS measurement is incorpo-

rated into the update step of the algorithm. The likelihood
of each particle’s position given the RSS measurement is
typically calculated using a Gaussian likelihood function,
which considers the difference between the observed RSS
and the expected RSS at each particle’s position. In PF
algorithm, the weight update equation can be expressed
as:

wi
t ∝ wi

t−1 × P(zt|xi
t) (4)

where wi
t−1 is the weight of the particle at the previous

time step, and P(zt|xi
t) represents the likelihood of the

observed RSS measurement given the particle’s position.
By iteratively performing the prediction, update, and

resampling steps, the PF algorithm effectively combines
information from the motion model and the observed RSS
measurements to accurately estimate the target’s position.

C. Multi-Agent Q-learning Algorithm

The multi-agent Q-learning algorithm [15] is an ex-
tension of the classical Q-learning algorithm [23] that
enables multiple agents to learn and make intelligent
decisions in a dynamic environment. It is a reinforcement
learning technique in which each agent interacts with the
environment, observes its state, selects actions, and learns
from the rewards received. The algorithm aims to find the
optimal policy for each agent to maximize its cumulative
rewards over time.

At each time step, each agent selects an action based
on its current state and the values stored in its Q-table. The
Q-table contains Q-values, which represent the expected
cumulative rewards for taking a specific action in a given
state. The Q-values are updated iteratively using the
Bellman equation [24]:

Q (s, a)← (1− α)Q (s, a)+

α

[
R (s, a) + γ max

a′∈Å

Q (s′, a′)

]
(5)

where Q(s, a) is the Q-value for state s and action a,
Å is the set of all admissible actions, α is the learning
rate that determines the weight given new information,
R(s, a) is the reward received after taking action a in
state s, γ ∈ (0, 1] is the discount factor that balances the
importance of future rewards, s′ is the next state, and
a′ ∈ Å is the next action.

The Q-value update equation combines the current Q-
value with the discounted maximum Q-value of the next
state-action pair, scaled by the learning rate. This update

Soleymani S.A. et al.: Target Tracking 5

rule allows agents to learn from the rewards they receive
and update their action selection policies accordingly. The
multiagent Q-learning algorithm involves coordination
and cooperation among the agents. Each agent updates its
Q-values based on its own experiences and the observa-
tions of other agents’ actions and rewards. The algorithm
can be applied to various multi-agent systems, such as
multi-robot systems, where agents need to collaborate and
communicate to achieve common goals.

D. Offloading Strategy

In order to efficiently manage the task offloading pro-
cess in the multi-UAV system, we propose an offloading
strategy that considers the remaining power of the UAVs.
This strategy aims to optimize the utilization of available
resources while ensuring effective task allocation and
minimizing power consumption. The strategy involves the
following steps:

1. Threshold setting: The offloading strategy uses
two threshold values, PW (w) and PW (e). These thresh-
olds are predefined on the basis of the remaining power
of the UAV. PW (w) represents the threshold at which
the power of the UAV reaches a low level, indicating
the need for partial offloading. PW (e) represents the
threshold at which the power of the UAV reaches a critical
level, necessitating complete offloading and initiating the
landing process.

2. Task offload decision: At each timestamp, the
UAV assesses its remaining power PWU,t and compares
it with the threshold values PW (w) and PW (e). Based on
this comparison, a decision is made regarding the task-
offloading strategy.

3. Partial offloading: When the remaining power
of the UAV is equal to or below PW (w), it indicates
a low power level. In this case, the UAV selectively
offloads some of its tasks to its cluster head (CH) and/or
nearby e/gNBs. This partial offloading strategy allows for
the distribution of computational load and ensures the
efficient utilization of available resources. Additionally,
the UAV sends a warning message to both the CH and
nearby e/gNBs, notifying them about its power status.

4. Complete offload and landing: If the remaining
power of the UAV reaches or falls below PW (e), it
indicates a critical power level that requires immediate
action. In this situation, the UAV initiates complete task
offloading, transferring all its tasks to the CH and/or
nearby e/gNBS. During the flight, the UAV sends an error
message to both the CH and nearby e/gNBs, indicating
its power status and triggering the landing process.

The decision-making process can be formulated as
follows:{

Partial Offloading if PWU,t ≤ PW (w)

Complete Offloading and Landing if PWU,t ≤ PW (e)

(6)
By dynamically adjusting the task offloading strategy

based on the remaining power of UAVs, this approach

ensures efficient resource utilization, minimizes power
consumption, and maintains the operational efficiency of
the multi-UAV system.

IV. Problem Formulation

In this work, we focus on continuously estimating
and tracking a target’s position using a swarm of UAVs.
Our approach prioritizes accurate target tracking while
minimizing both power consumption and delay, ultimately
enhancing the efficiency and effectiveness of the multi-
UAV tracking system.

A. Tracking Accuracy

Assuming that CRn represents the coverage radius of
the n-th UAV, it is necessary for a TN to be within the
coverage zone of at least three UAVs. In other words,
the horizontal distance between the TN and each UAV,
denoted as rn, must be less than or equal to the respective
coverage radius Rn, where n = 1, 2, · · · , N and N ≥ 3 is
the number of available UAVs. Therefore, the first con-
straint to successfully localize the node can be expressed
as rn ≤ CRn. Given the estimated horizontal distance
r̂mn and the known projection (ẋn,t, ẏn,t) of the n-th UAV
at time t, the position of m-th TN can be estimated by
finding the coordinates (x̂m,t, ŷm,t) that establishes

ˆTNm,t = (x̂m,t, ŷm,t) =

argmin
x,y

{
N∑

n=1

(∥Un,t − TNm,t∥ − r̂mn)
2

}
(7)

where ∥.∥ is the Euclidean distance. It provides a straight-
forward measurement of the spatial separation between
the two entities for example, the n-th UAV and the m-th
target node. Here, r̂mn is the estimated horizontal distance
between the UAV n, and TN m.

∥Un,t − TNm,t∥ =
√

(ẋn,t − xm,t)
2
+ (ẏn,t − ym,t)

2

(8a)

r̂mn =

√
d̂2mn,t − ż2n,t (8b)

A = d̂mn =
∥∥∥Un,t − ˆTNm,t

∥∥∥ (8c)

This formulation provides the target nodes’ position for
a given żn,t at time t. Given the estimated position, the
localization error is given by:

E =

√√√√ N∑
n=1

|r̂mn,t − rmn,t|2 (9)

Given the impact of UAV altitude ż on minimizing
localization error, it is necessary to determine the optimal
altitude ż. To this end, we formulate the problem as
an optimization task. The objective is to determine the

6 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. , No.

altitude value that results in the lowest localization error.
This can be expressed mathematically as follows:

P1: min
ż

{E}

subject to (8b)
(10)

The optimization problem described in Equation (10) is
influenced by various relevant parameters that are vital
for the localization process. These parameters encompass
the number of UAVs (N), the inter-UAV distance, and
the range and coverage capabilities of the UAVs denoted
as CRn. As the localization is achieved using the RSS
technique, the optimization problem takes into account the
effects of path loss, attenuation, reflection, diffraction, and
scattering caused by obstacles obstructing the line of sight
between the UAVs and target nodes. Furthermore, the
sensor characteristics of the UAVs, the properties of the
target being localized, and the communication constraints
among the UAVs also contribute to these optimization
considerations. Each of these parameters plays a signifi-
cant role in determining the localization performance and
must be carefully considered in formulating the optimiza-
tion problem. By accounting for these parameters, the
objective of the optimization problem is to identify the
optimal altitude ż that minimizes the localization error.
This ensures the achievement of accurate and reliable
target localization and tracking by the multi-UAV system.

B. Power Consumption

In this system, the power consumption of UAVs poses
a significant challenge due to their limited power capacity.
Efficient management of power resources becomes crucial
for successful target tracking operations. To address this
challenge, we propose a task-offloading strategy in this
work. The strategy involves making decisions on whether
to execute a task locally on a UAV or offload it, either
partially or fully, to other entities in the network such as
other UAVs or e/gNBs. By intelligently distributing the
computational load, we aim to optimize power consump-
tion and enhance the overall performance of the target
tracking system. This strategy enables the system to effec-
tively utilize available resources and mitigate the impact
of power limitations on UAVs, ultimately improving the
system’s power efficiency and tracking capabilities.

As explained in [25], the power consumption for an
UAV during target tracking is the sum of computational
power PCloc, task offloading or communication PCoff ,
and mobility or flight PCfly as follows:

Puav = PCloc + PCoff + PCfly (11)

The computation of a task performed locally on a
UAV depends on several factors. These factors include
task complexity O, the number of bits of input data in
the computation II , the size of the offload data IO, and
the power consumption for each CPU cycle in the UAV
PCUcpu

. The power consumption for UAV running each

CPU cycle can be expressed as follows:

PCloc =

{
OT × PCUcpu

× II Fully locally
OT × PCUcpu

× (II − IO) Partially locally
(12)

Besides, the power consumption for offloading the
task by an UAV to e/gNB/another UAV can be written
as [26]:

PCoff = PTX ×
IO

RU2X(PTX)
(13)

where PTX denotes transmit power and RU2X(PTX) in
bits-per-second (b/s) denotes the offloading rate from an
UAV to another entity.

When analyzing the impact of UAV mobility on power
consumption, several parameters need to be considered,
including speed, payload, horizontal movement, vertical
movement, and hovering [27]. These factors play a sig-
nificant role in determining the power expenditure asso-
ciated with the mobility of UAVs. The cumulative power
consumption for mobility/flight can be mathematically
represented as follows:
PCfly =

PC
(1)
v̇,∆t + PC

(2)
m,∆t + PC

(3)
v̇,m,∆t + PC

(4)
v̇,m,∆t + PC

(5)
v̇,m,∆t

(14)
where

PC
(1)
v̇,∆t = k v3 (15a)

PC
(2)
m,∆t = k m (15b)

PC
(3)
v̇,m,∆t =

1

2
ρ a Cd v̇3x + µ m g v̇x (15c)

PC
(4)
v̇,m,∆t = m g v̇y (15d)

PC
(5)
v̇,m,∆t = m g v̇h (15e)

here, PC
(1)
v̇,∆t represents the power consumed when the

UAV flies at a certain speed in meters per second. PC
(2)
m,∆t

refers to the power consumed when the UAV flies with
a payload m in grams. PC

(3)
v̇,m,∆t represents the power

consumed when the UAV flies in a straight horizontal
line. PC

(4)
v̇,m,∆t is the power consumed when the UAV flies

vertically to reach a desired altitude. Lastly, PC
(5)
v̇,m,∆t

denotes the power consumed when the UAV hovers at
a specific altitude. m is the mass of the UAV, g is the
acceleration due to gravity, v̇ is the velocity of the UAV.
ρ is the air density, a is the frontal area of the UAV, Cd

is the drag coefficient, µ is the coefficient of friction, k
represents a coefficient that respectively relate velocity
and payload to the power consumption.

Given our objective of minimizing UAV power con-
sumption, we can formulate the problem as follows. We
aim to minimize the overall power consumption of the
UAV, which consists of communication-related power
consumption, computation-related power consumption,
and mobility-related power consumption. This objective
is subject to constraints such as task computation, task
allocation, transmit power allocation, and UAV trajec-
tory design. By optimizing these variables and their
allocations, we can achieve the goal of reducing power

Soleymani S.A. et al.: Target Tracking 7

consumption while ensuring efficient task execution and
communication among UAVs and other entities in the
network. This problem can be formulated as follows:

P2: min
L,O,F

{Puav}

subject to (12), (13), (15a), (15b), (15c), (15d), (15e)
(16)

where L =
{
OT , ECUcpu , II , IO

}
, O = {PTX , RU2X},

and F = {m, v̇, a}. In Equation (16), we aim to minimize
the power consumption of a UAV. The optimization
problem explicitly depends on several factors, including
the velocity of the UAV (v̇), the mass of the UAV (m),
the transmit power (PTX), the offload rate (RU2X), the
distance to the target, the distance to the CH and the
distances to nearby e/gNBs.

The objective is to find the optimal values of these
parameters that minimize the power consumption, taking
into account the constraints and considerations specific to
the UAV’s operation. By optimizing these parameters, we
can effectively reduce the power consumption of the UAV,
thus increasing its operational efficiency and extending its
flight time.

C. Delay

In real-time target tracking systems, delay also poses
a significant challenge. This delay can include various
components such as transmission delay, computing delay,
and propagation delay. These delays can affect the overall
performance of the system, affecting the accuracy and
efficiency of the target tracking process. Minimizing delay
is crucial to ensure timely and accurate updates in the
tracking information, enabling UAVs to make informed
decisions and respond swiftly to changes in the target’s
position or movement. Therefore, in the design and imple-
mentation of such systems, reducing and managing delay
becomes a critical consideration. Therefore, the total delay
can be formulated as follows:

Dtotal = Dtran +Dprop +Dcomp (17)

where Dtran, Dprop, and Dcomp refer to transmission de-
lay, propagation delay, and computing delay, respectively.

The transmission delay in the target tracking system
refers to the time it takes for data to travel from one
point to another within the communication network. In
the context of UAV target tracking, transmission delay
can arise when the UAVs need to exchange information,
such as target positions or tracking updates, with each
other or with the central control station. The transmission
delay can be quantified using the following equation:

Dtran =
Datasize
BW

(18)

where Datasize is data size to be transmitted (in bits)
and BW is transmission bandwidth (in bits per second).
In a multi-UAV tracking scenario, UAVs might need
to send and receive data to coordinate their tracking
efforts. For example, UAVs can share their estimated

target positions or other relevant information to ensure
comprehensive tracking coverage. The transmission delay
becomes crucial in such cases to avoid delays in data
exchange, which could lead to inaccurate or outdated
target tracking information among UAVs.

The propagation delay in the target tracking system
refers to the time it takes for signals or data to propagate
through the communication medium from the transmitter
to the receiver. In the context of UAV target tracking,
propagation delay can arise due to the finite speed at
which electromagnetic waves travel through the air or
other communication channels. The propagation delay can
be quantified using the following equation:

Dprop =
Dist

Sprop
(19)

where Dist is distance between the transmitter and re-
ceiver (in meters) and Sprop refers to propagation speed
of the signal (in meters per second). The propagation
delay depends on the distance between the transmitter
(e.g., one UAV) and the receiver (e.g., another UAV or a
ground station) and the speed at which the signal travels
through the communication medium. Since the speed of
light is constant in the air (approximately 3× 108 meters
per second), the propagation delay depends mainly on the
distance between the communicating entities. In the multi-
UAV tracking scenario, the UAVs might be spread out
across a certain area, and the propagation delay becomes
a consideration when exchanging data or control signals
between UAVs or between UAVs and e/gNB. Longer
distances between UAVs or the UAVs and e/gNB can lead
to longer propagation delays, which may affect the real-
time tracking and coordination of the UAVs.

Computing delay on a UAV in the target tracking
system refers to the time it takes for the UAV’s onboard
processing unit (e.g., CPU) to perform computations and
make decisions. This delay can occur when the UAV
needs to process sensor data, perform calculations, and
execute control algorithms to determine its next actions.
The computing delay can be expressed as follows:

Dcomp =
CPUy

CPUl
(20)

where CPUy refers total number of CPU cycles required
to perform the computation and CPUl denotes CPU
clock speed (in cycles per second). The computing delay
depends on the complexity of the computations required
for target tracking and the speed of the UAV’s CPU. More
complex computations or higher CPU clock speeds can
result in shorter computing delays, allowing the UAV to
process information and make decisions more quickly. In
a multi-UAV target tracking system, computing delays
are critical to consider, especially when multiple UAVs
need to collaborate and exchange information. Delays in
processing data or making decisions could lead to reduced
tracking accuracy, potential collisions, or inefficiencies in
the UAV’s movements.

8 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. , No.

Given our objective, minimizing delay, we formulate
the problem as follows:

P3: min
Datasize,Dist,CPUl

{Dtotal}

subject to (18), (19), (20)
(21)

This objective is subject to transmission, propagation and
computing delay. The optimization problem explicitly
depends on the size of the data Datasize, the distance
between sender and receiver Dist, and the CPU power
CPUl. The objective is to find the optimal value for
the size of the exchanged data and the optimal distance
between UAVs/between UAVs and e/gNBs.

V. Our Approach: Design of an Approach for Target
Tracking by Multi-UAVs

This section presents our approach to target tracking,
integrating key algorithms for accuracy and efficiency.
A PF-based localization algorithm is used by a swarm
of SNs to estimate the target’s position. e/gNBs then
select suitable UAVs for tracking based on these data.
A clustering technique forms UAV clusters, with at least
three UAVs and one designated as the Cluster Head (CH).
To optimize tracking, UAVs use a Q-learning algorithm
to determine the best flight path, considering power, accu-
racy, delay, and collision avoidance. Detailed descriptions
of these methods are provided in the following sections.

A. PF-based Localization Algorithm

Localization based on RSS measurements poses var-
ious challenges, such as non-linear of sight (NLoS) and
multipath propagation, which can lead to inaccurate dis-
tance estimations. The susceptibility of RSS measure-
ments to variability and noise further adds uncertainty
to the localization process. In addition, the acquisition of
a sufficient number of RSS measurements from reference
points or anchors can be difficult in certain scenarios.

To address these challenges, PF emerges as a powerful
technique in RSS-based localization. PF addresses these
issues by effectively integrating information from the mo-
tion model, RSS measurements, and particle weights. This
integration creates a versatile and robust framework that
enables accurate estimation of the target’s position, even
in the presence of NLoS effects, noise, sparse measure-
ments, and dynamic target movement. By incorporating
RSS into the PF algorithm, it significantly improves the
precision and reliability of the target position estimation.

Consider a scenario in which a mobile target node
is located in an unknown location TN = (x, y), while
n mobile SNs are located in known locations SNj =
(ẍj , ÿj), with 1 ≤ j ≤ n in a 2D area. A SN swarm
will use a PF algorithm to infer TNt given the signal
power received PRX,t and the signal power transmitted
PTX,t at time t from the target node. This estimation
process involves determining the belief or probability
distribution, denoted as bel (TNt), which represents the
confidence in the position of the target node at time t. We

can express this belief as P (TNt|PRX,1:t, PTX,t), where
PRX,1:t represents the signal power received over the time
interval [1 : t]. By employing the Bayesian approach, we
can derive the posterior as follows [28]:

bel (TNt) (22)
= P (TNt|PRX,1:t, PTX,t)

=
P (PRX,t|TNt, PTX,t)P (TNt|PRX,1:t−1, PTX,t−1)

P (PRX,t|PRX,1:t−1)

= ϑP (PRX,t|TNt, PTX,t)P (TNt|PRX,1:t−1, PTX,t−1)

where, according to Equation (1), PRX,t = PTX,t−L0−
10 α log10d−ηt and ϑ represents the normalized constant
that ensures the sum of X = P (TNt|PRX,1:t−1, PTX,t−1)
over all possible values of TNt equals to 1. Applying
the Chapman-Kolmogorov equation [29], we obtain the
following result:

X = (23)∫
P (TNt|TNt−1)P (TNt−1|PRX,1:t−1, PTX,t−1) dTNi,t−1

where the Chapman-Kolmogorov equation states that the
probability of transitioning from one state to another at
a future time step can be calculated by considering the
intermediate states. Mathematically, it can be expressed
as:
P(Xt+1|X0, . . . , Xt)

=

∫
P(Xt+1|Xt)P (Xt|X0, . . . , Xt−1)dXt

The posterior probabilities are iteratively obtained
using the following recursive formulation:

bel (TNt) = (24)

Z
∫
P (TNt|TNt−1) bel (TNt−1) dTNt−1

where
Z = ϑP (PRX,t|TNt, PTX,t)

Based on Equation (24), we can outline the local-
ization principle through the following steps. The initial
belief of the location of the target, denoted as a set of
particles S, serves as the starting point for the local-
ization process. The evolution of these particles plays
a crucial role in achieving an accurate and convergent
representation of the target’s positions over time. To cap-
ture the transition of the target’s movement, samples are
drawn from the motion transition model P(TNt|TNt−1)
to represent the distribution of target positions in the
next time instance. The transition model P(TNt|TNt−1)
describes the probability that a target node transitions
from position TNt−1 to position TNt, indicating how the
target’s location evolves over time. This allows us to track
the target’s trajectory and estimate its location at each time
step.

During the particle filtering weighting phase, we as-
sess the compatibility of the particles generated from
the transition model P(TNt|TNt−1) with the observed
evidence PRX,t. Assuming independence of the distance

Soleymani S.A. et al.: Target Tracking 9

Algorithm 1 Particle filtering algorithm

Initialization:
Input: t, St−1, PRX,t,P
Output: St

ϑ = 0, sample S0(s) from P(TN0)
if t > 0 then

for s ∈ samples do
sample St(s) from P(TNt|TNt−1)
weight W (s) = P(PRX,t|TNt, PTX,t)
W (s) = W (s)/ϑ

end for
end if
for s ∈ samples do

ϑ = ϑ+W (s)
end for
resample St(s) according to W (s) with replacement
return St

Algorithm 2 Weight update

Input: TNt, St, SNt, PTX,t

Output: W (s)
for i ∈ samples do

TNt(i) = St(i)
for j ∈ SN do

d′i,j = ∥TNi − SNj∥
P(ri,j |d′i,j , Pi,j) ∼

N (mean(d′, PTX,t), σ(d
′, PTX,t))

end for
W (i) =

∏
j∈B P(ri,j |d′i,j , Pi,j)

end for
return Wt(i)

measurements, the importance factors wi
t of particles TN i

t

are determined based on a weighting function:

P(PRX,t|TNt, PTX,t) =∏
j∈B

P(rij |TNij , Pij)t =
∏
j∈B

P(rij |d′ij , Pi,j)t (25)

These importance factors are proportional to the likeli-
hood of the particles given the observed evidence, reflect-
ing their suitability as representatives of the true target
position at time t.

In the resampling step, new particles are selected with
a probability that is directly proportional to their weights.
This means that the particles with higher weights, which
correspond to the most likely representations of the tar-
get’s position, have a greater chance of being chosen.
Conversely, particles with lower weights, which are less
likely to accurately represent the target’s position, have
a lower probability of being selected. Through this re-
sampling process, the particles gradually converge toward
the most likely point, step by step, resulting in a refined
and more accurate estimation of the target’s position (see
Algorithms 1 and 2).

B. UAV Swarm Selection by e/gNB

After detecting the target TN and estimating its posi-
tion, the SNs promptly transmit the target location infor-
mation to the nearby e/gNB. Upon receiving these data,
the e/gNB selects a swarm of UAVs to efficiently track the
target TN. To facilitate this process, e/gNB employs an
xApp developed on the RIC framework, enabling intelli-
gent decision-making for resource management. Drawing
on our previous work [30], the developed xApp leverages
the optimized computing resource allocation (OCRA)
model to allocate the most appropriate UAVs for tracking.
Within this model, UAVs are treated as valuable resources,
and each e/gNB maintains a pool of UAVs, selecting
the optimal ones based on criteria such as power levels,
proximity to the target, and available resources.

To ensure that UAVs find the most efficient path
to the target, a path planning algorithm is employed
(see Algorithm 3). This algorithm calculates the best
flight paths considering factors such as obstacles, power
efficiency, and time to the target. The selected UAVs
then utilize this algorithm to determine the optimal route,
ensuring they reach the target in the shortest time while
conserving power.

Once the UAVs are selected, they form a cluster, with
the UAV possessing the highest power level designated
as the cluster head (CH). The CH plays a central role in
coordinating the tracking process and managing commu-
nication among the UAVs in the cluster. By designating
the UAV with the highest power level as the CH, the
system ensures that the UAV is equipped with sufficient
resources to handle coordination duties effectively. Algo-
rithm 4 outlines the pseudocode for the selection process
of the UAVs and the cluster head.

C. Our Multi-Agent Q-learning Algorithm

In this section, we propose our multi-agent Q-learning
algorithm (MAQL) that incorporates power consumption,
accuracy, delay, and avoiding collisions with obstacles in
action selection. We first model the problem of target
tracking by a swarm of UAVs using the Markov Decision
Process (MDP). It is defined as a tuple (S,A,P,R),
where:
• S is the set of states s ∈ S representing the current

configuration of the UAV swarm and the target.
• A is the set of actions a ∈ A that the UAVs can take

in each state.
• P is the transition probability function P =
{p(s′|s, a)|s, s′ ∈ S, a ∈ A}, which gives the probabil-
ity of transitioning to state s′ when action a is taken in
state s.

• R is reward function, R = {r(s, a)|s ∈ S, a ∈ A},
which assigns a numerical reward to each state-action-
state’ triplet.
As explained in [31], for decision problems that

exhibit the Markovian property, it is possible to find an
optimal policy that relies solely on the current state to

10 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. , No.

Algorithm 3 Path-planning algorithm for UAV

Input: Initial UAV position Un,t, target position
TNm,t, obstacle positions O, UAV power level PWn,t

Output: Optimal flight path for UAVs
Initialize UAV position: Ucurrent ← Un,t

Initialize Target position: TNcurrent ← TNm,t

Set maximum iterations: iter ← maxIter
Initialize empty path: path← [Ucurrent]
for i = 1 to iter do

Calculate the distance to the target:
dist← ||Ucurrent − TNcurrent||
if dist < threshold then

Break: Target reached
end if
Find obstacle-free neighboring nodes from Ucurrent

Evaluate cost for each possible path considering:
- Distance to the target
- Power consumption for movement
- Direction change penalty

Choose the next position Unext with minimum cost
Update current position: Ucurrent ← Unext

Append Ucurrent to path
Check remaining power:
if PWn,t < powerThreshold then

Break: Insufficient power
end if
Adjust altitude if required for better RSSI or obsta-

cle avoidance
end for
if Ucurrent ̸= TNcurrent then

Output: Path not found
else

Output: Optimal path path
end if

Algorithm 4 UAV swarm & cluster head selection

Input: Pool = {UAV1, UAV2, · · · , UAVN}, TN =
(x, y)
Output: LUf ⊂ Pool, CH
Initialize LUf as an empty list
LUf ← OCRA model(Pool)
CH ← Select a UAV with highest power level from
LUf

return LUf , CH

make decisions. In the context of tracking targets by UAVs
and UAV communication systems, which inherently pos-
sess the Markovian property, it is appropriate to consider
Markovian policies. These policies enable UAVs to make
informed decisions based on their current state without
requiring extensive knowledge of past states or actions.
Using Markovian policies, we can effectively optimize the
tracking and communication strategies of UAVs, taking
into account the dynamic nature of the environment and
the evolving target movements.

The goal in solving MDP is to find an optimal policy
π : S → A that maximizes the cumulative expected
reward over time. This can be achieved by using re-
inforcement learning algorithms, such as Q-learning, to
iteratively update the Q-values, Q(s, a), which represent
the expected cumulative reward for taking action a in
state s and following the optimal policy thereafter. The
optimal policy can be obtained by iteratively updating the
Q-values based on Equation (5).

In the context of MDP, the expectation operator with
respect to a policy π and the number of time slots T refers
to the expected value of a certain quantity over a sequence
of T time steps, taking into account the stochasticity of
the system and the actions chosen according to the policy
π. Mathematically, the expectation operator with respect
to the time intervals of policy π and T is denoted as
E [.|π, T] and represents the average value of a function
or random variable over multiple time steps, considering
the actions taken according to policy π. Considering a
reward function R(st, at), we can calculate the expected
cumulative reward R(1)

π over T time steps using the
expectation operator as [32]:

Q(1)
π = arg max

π
E

[
T−1∑
t=0

γtR(st, at)|π, T

]

= E
[
R(st, at) + γQ(1)

π (st+1, at+1)|π, T
]

(26)

Here, the expectation is taken over all possible se-
quences of state-action pairs (st, at) that can be generated
by the policy π for T time steps. In our approach, a swarm
of N available UAVs, where N ≥ 3, forms a cluster to
collectively track a target. As a result, Equation (26) can
be reformulated as follows:

Q(N)
π =

arg max
π

E

[
N∑

n=1

[T−1∑
t=0

γtR(st, at)|π, T
]
|π,N

]
(27)

The objective of our proposed multi-UAV tracking
approach is to maximize R(N)

π . The optimization problem
can be formulated as follows:

max
π

{
Q(N)

π

}
subject to (27)

(28)

Based on the formulation of Equation (28), we will
now present our MAQL algorithm. The main motivation
behind our approach is to impose restrictions on agents,
preventing them from taking unnecessary actions that
do not align with our objectives. Our objectives include
minimizing power consumption and delay, maximizing
accuracy of tracking, and avoiding collisions with obsta-
cles and other UAVs. By incorporating these restrictions,
we aim to guide the decision-making process of the
agents towards actions that are more aligned with our
desired outcomes. In pursuit of our objectives, we devise
a comprehensive reward function for UAVs, denoted by

Soleymani S.A. et al.: Target Tracking 11

Rn,t(s, a), when UAV n takes action a in state s at time
t as follows:

Rn,t(s, a) = r+n,t(s, a) + ṙ−n,t(s, a) + r̈−n,t(s, a) (29)

This reward function amalgamates three crucial com-
ponents, each contributing to the UAV’s performance
evaluation. Specifically, we express the reward function
as the sum of three terms:
• r+n,t(s, a): This term encompasses the positive rewards

related to power consumption, delay, and accuracy.
Reflects the efficiency of the UAV in these aspects,
encouraging actions that lead to minimized power
consumption, reduced delay, and improved tracking
accuracy.

• ṙ−n,t(s, a): This term involves the negative reward func-
tion for avoiding obstacle collisions. It penalizes actions
that can potentially result in collisions with obstacles in
the environment, motivating the UAV to choose paths
that ensure safe navigation.

• r̈−n,t(s, a): This term introduces the negative reward
function associated with avoiding collisions with other
UAVs within the cluster. It discourages actions that
might lead to potential collisions with other UAVs, pro-
moting collaborative and collision-free flight patterns.
In the following, we delve into each reward function,

providing further insight into their definitions and impli-
cations for guiding the UAV’s decision-making process in
the dynamic and complex tracking environment.

In accordance with our objective of minimizing power
consumption, delay, and maximizing tracking accuracy,
we have crafted a reward function denoted as rn,t(s, a).
This reward function is designed to encompass the essen-
tial aspects of our tracking approach, enabling us to make
informed and optimal decisions. The reward function is
formulated as follows:

rn,t(s, a) = w1× (1− P) +w2× (1− D) +w3×A (30)

where P, D, and A represent power consumption, delay,
and accuracy, respectively. To achieve our objectives, we
introduce weights w1, w2, w3, assigned to power, delay,
and accuracy.

Given the diverse nature and varying value ranges
of the parameters, normalization and conversion into a
common scale become essential. By normalizing these pa-
rameters, we ensure that each parameter contributes pro-
portionately to the overall optimization process, regardless
of its original scale. This normalization step enables fair
comparison and effective combination of different objec-
tives, facilitating a balanced decision-making process for
our multi-objective tracking system. The normalization
formula is given by [33]:

˜V alue =
V aluesrc − V aluemin

V aluemax − V aluemin
(31)

The data normalization process involves utilizing the
original data V aluesrc and transforming it into a nor-
malized value ˜V alue. The normalized value is calculated
using the minimum value V aluemin and maximum value
V aluemax from the original data set. In this work, we

apply this method to normalize power consumption, delay,
and accuracy, resulting in P̃, D̃, and Ã as normalized
values for power consumption, delay, and accuracy, re-
spectively.

In addition, in multi-objective decision making, the
importance of various parameters can vary depending
on different situations. The appropriate assignment of
weights to these parameters is crucial to achieve op-
timal results. For instance, accuracy is typically pri-
oritized over power consumption and delay, but when
the UAV’s power is below a certain threshold, power
becomes more critical than accuracy and delay. In such
dynamic scenarios, Pareto optimization proves to be a
powerful approach [30]. Using Pareto optimization, the
UAV system can adapt its weighting strategy based on
real-time conditions, recalculating the optimal trade-offs
and solutions [34]. Implementing dynamic weighting with
Pareto optimization involves the following steps. Firstly,
create a weighting policy that defines how the weights
should be adjusted based on environmental and mission-
specific factors. Continuously monitor the environment to
identify changes or specific scenarios that require different
weightings. Once detected, update the weights based on
information from the environment and the established
policy. Subsequently, recalculate the Pareto frontiers using
the new weights to identify updated trade-offs and optimal
solutions that align with the evolving priorities. This
approach allows the UAV cluster to respond effectively
to changing conditions, making informed decisions and
optimizing its performance in dynamic and challenging
environments. Therefore, based on normalization, we re-
formulate Equation (30) as follows:

r+n,t(s, a) = w1×
(
1− P̃

)
+w2×

(
1− D̃

)
+w3× Ã (32)

In addition to these objectives, our approach also takes
into account the need to avoid collisions with obstacles
in the urban environment. This is incorporated into the
reward function as a negative reward. As detailed in
Section A, when each UAV enters the e/gNB area, it
quickly acquires the necessary information on the ob-
stacles present within that specific area from the e/gNB.
This exchange of information ensures that the UAV is
well informed about the obstacles in its vicinity, allowing
it to navigate safely and effectively during the tracking
process. Let the environment be represented by a 3-D grid
of size X ×Y×H, where each cell is denoted by (x, y, z),
with 1 ≤ x ≤ X , 1 ≤ y ≤ Y , and 1 ≤ z ≤ H. In this
environment, when an obstacle is present at coordinates
(x, y, z), we represent the corresponding cell on the grid
as 1, denoted as O(x, y, z) = 1, signifying the location of
the obstacle. In contrast, if the cell is obstacle-free, we
set O(x, y, z) = 0, which indicates an unobstructed area.

When a UAV is located at position (ẋ, ẏ, ż) and
takes action a, it results in a move to a new location
(ẋ′ = ẋ±∆xa, ẏ

′ = ẏ ±∆ya, ż
′ = ż ±∆za). Here, ∆xa,

∆ya, and ∆za represent the respective displacements of
the UAV on the x-axis, y-axis, and z-axis according to
the selection of the action a. To avoid collisions with

12 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. , No.

obstacles, it needs UAVs to compute the probability of
collision using a probabilistic approach based on each
action. Let Po(a) ∈ [0, 1] be the probability of an obstacle
collision for the action a. Since UAVs know the locations
of obstacles, they can directly check if any obstacle lies
in the path of action a and calculate the probability
accordingly. If any cell with O(x, y, z) = 1 and z ≥ ż
lies between (ẋ, ẏ, ż) and (ẋ′, ẏ′, ż′) resulting from taking
action a, then the probability of collision Po(a) is set to
1, indicating a high probability of collision. However, if
there are obstacles with O(x, y, z) = 1 along the action
trajectory a, but these obstacles are encountered after
reaching the new location, the UAV measures the distance
Distu′o between the last known position (ẋ′, ẏ′, ż′) and
the obstacle location (xo, yo, zo) along the trajectory of
action a. In addition, it calculates the distance Distuo
between the current location of the UAV (ẋ, ẏ, ż) and
the obstacle location (xo, yo, zo). Based on these mea-
surements, the probability of collision Po(a) is calculated
as follows:

Po(a) =
Distuo −Distu′o

Distuo
(33)

On the other hand, if there is no risk of collision, meaning
O(x, y, z) for all cells in the path is 0, then Po(a) is set
to 0.

In such cases, we include a negative reward ṙ−n,t(s, a)
in the overall reward function as follows:

ṙ−n,t(s, a) = Po(a)×−r+n,t(s, a) (34)

This negative reward represents the penalty incurred
for the possibility of colliding with an obstacle during
the action. If there is no potential for collision with
obstacles along the trajectory of action a, the UAV does
not receive any negative reward and the overall reward is
unaffected. However, if there is a possibility of collision,
the negative reward is incorporated to discourage the UAV
from selecting actions during its flight that could lead to
collisions with obstacles.

In addition, since a group of UAVs fly closely together
to track a target, it is crucial that each UAV avoid
collisions with other UAVs within the group during target
tracking. To address this issue, we have two options: (i)
By forcing UAVs to fly at different altitudes, we can
reduce the risk of collisions between them. This approach
ensures that each UAV maintains a safe distance from
other UAVs within the swarm, minimizing the chances
of interference and accidents. However, it is important
to note that this approach may result in an increase
in the power consumption of UAVs that fly at higher
altitudes. (ii) Introduce an additional negative reward to
our approach denoted as r̈−n,t(s, a). This negative reward is
applied when the UAV n in state s takes action a at time t,
and this action increases the probability of collision with
other UAVs in the swarm. In contrast to fixed obstacles,
the dynamic nature of mobile obstacles, such as other
UAVs, introduces unpredictability into the environment.
Hence, it becomes crucial to account for probabilities
when avoiding collisions with these moving obstacles.

UAV i
Obstacle

Figure 2: Distance between UAV and an obstacle.

UAV i UAV j

Figure 3: Distance between two UAVs after selecting the
next action.

Next admissible UAV location

Figure 4: All allowable actions at each state s.

Let Pu(a) ∈ [0, 1] represent the probability of collision
with other UAVs in the group for action a. Since each
UAV in the cluster has knowledge of the last locations
of other UAVs and the location of the target node, it
can compute the probability Pu(a) for each action based
on this information. To do this, each UAV will check if
there is any overlap between its planned trajectory and
the trajectory of the other UAV. This is accomplished
by calculating the Euclidean distance ∥.∥ between two
UAVs i and j, known as Distuiuj

. Furthermore, the
UAV i measures the distance between its current location
(ẋi, ẏi, żi) and the new location after taking action a
(ẋ′

i, ẏ
′
i, ż

′
i), denoted Distuiu′

i
. The UAV i also performs

the same calculations for all the actions that UAV j may
take and lead to two UAVs approaching each other. Next,
the UAV i computes the distance between (ẋ′

i, ẏ
′
i, ż

′
i) and(

ẋ′
j , ẏ

′
j , ż

′
j

)
, denoted as Distu′

iu
′
j
. This evaluation allows

each UAV to anticipate the movements of its neighboring
UAVs and identify any potential overlaps between their
respective planned trajectories. We also defined a certain
threshold value, which represents the minimum safe dis-

Soleymani S.A. et al.: Target Tracking 13

State:
𝒔𝒕

Reward:
𝑹𝒕 𝒔𝒕, 𝒂𝒕 ← 𝒓+ + ሶ𝒓− + ሷ𝒓−

Environment

S. Action:
𝒂𝒕
′

P. Action:
𝒂𝒕−𝟏
′

Se
le

ct
 th

e
be

st
 a

ct
io

n

Next
Action

Figure 5: eMAQL.

tance Dists to avoid collision. We compute Pu(a) based
on the Distu′

iu
′
j

and Dists as follows:

Pu(a) = 1−
Distu′

iu
′
j

Dists
(35)

This probability indicates the likelihood that the se-
lected action may lead to a collision with other UAVs
within the tracking cluster. If Pu(a) equals 1, indicating
a high likelihood of collision, otherwise, if Pu(a) equal
to 0, there is no risk of collision.

In the next step, we compute the negative reward
r̈−n,t(s, a) as follows and include it in the overall re-
ward function. This integration emphasizes UAV decision
making that actively avoids collisions with other UAVs
within the cluster, effectively improving safety and target
tracking efficiency.

r̈−n,t(s, a) = Pu(a)×−r+n,t(s, a). (36)

By including these reward components, our approach
encourages UAVs to make decisions that prioritize col-
lision avoidance while still optimizing power, delay, and
accuracy objectives. In our MAQL algorithm, during the
target tracking process, each UAV in each state s is
required to employ these reward components and measure
the total reward value R(s, a) for all admissible actions
a ∈ Å =

{
kπ
180 | ∀ k ∈ N, 1 ≤ k ≤ 360

}
. These admissi-

ble actions represent various flight directions along the
x, y, and z axes. Individually, every UAV manages its
exclusive Q-table, which includes both the R(s, a) values
and the corresponding Q-values Q(st, at) for all allowable
actions in each state s. The Q-table is continuously
updated as the UAV transitions between states during the
target tracking process. By storing measured Q-values,
each UAV can make informed decisions about its next
actions, selecting the actions that maximize the expected
cumulative reward, as defined in Equation (28). This
enables the UAV to efficiently track the target, navigate
the environment effectively, and optimize its trajectory for
improved tracking performance.

D. Enhanced-MAQL (eMAQL)

In our MAQL, UAVs monitor the current state of
the target and determine the next action based solely on
the current scenario. Although this method allows real-
time adaptability, it can result in inefficiencies, partic-
ularly in environments where the target’s movement is
unpredictable or erratic [35]. Specifically, since targets

Algorithm 5 UAV replacement

Initialization:
PW (w): Low power threshold
PW (e): Critical power threshold
Pool: A Pool of available UAVs
CH: Cluster Head
e/gNB: Base Station
while Target tracking is ongoing do

for Each UAV in the cluster do
if PWU,t < PW (w) then

UAV sends a warning message to CH and
e/gNB

UAV turns off non-essential functions
UAV receives target location from CH

else if PWU,t < PW (e) then
UAV sends an error message to CH and

e/gNB
UAV initiates landing procedure

end if
end for
if Warning message received by e/gNB then

e/gNB finds a new UAV from its Pool
Dispatch the new UAV to replace the warning-

sending UAV
end if

end while

can change direction frequently, UAVs need to adjust
their flight path accordingly, often leading to a zigzag
movement pattern. This pattern not only results in inef-
ficient tracking but also causes a significant increase in
UAV energy consumption as a result of constant course
corrections.

To address this issue, we propose eMAQL, which
extends MAQL by incorporating past actions into the
state representation, effectively maintaining a form of
memory. Unlike MAQL, where the problem is modeled
as a Markov Decision Process (MDP), assuming that
the future state depends solely on the current state and
action, real-world UAV tracking exhibits the character-
istics of a Partially Observable Markov Decision Process
(POMDP) [36], [37]. This is because UAVs receive partial
and noisy observations of the target’s position due to
factors such as sensor noise, environmental occlusions,
and unpredictable target maneuvers. In practical UAV
tracking scenarios, relying solely on the current state
without incorporating historical data can lead to sub-
optimal decision-making, particularly when observations
are unreliable or incomplete. By integrating past actions
into the state representation, eMAQL enables UAVs to
leverage historical context, improving their ability to infer
hidden states, predict future movements, and make more
informed navigation decisions. This memory-enhanced
approach helps mitigate the uncertainties introduced by
partial observability, leading to more stable and accurate
target tracking in dynamic environments.

14 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. , No.

As illustrated in Figure 5, eMAQL enhances the
decision-making process by determining the next optimal
move for UAVs. Specifically, the UAV selects the best
action from the set of possible actions a

′

t, based on the
current state st, the current action at, and the previous
action a

′

t−1. This enhanced decision-making process al-
lows UAVs to make more informed choices about their
next action, considering not only the present situation, but
also their previous movements.

By factoring in the last action, eMAQL introduces a
form of movement prediction that mitigates unnecessary
back-and-forth movement patterns, leading to a smoother
trajectory. This results in reduced power consumption, as
fewer course corrections are needed, and better overall
tracking performance. In addition, eMAQL helps UAVs
maintain better spatial awareness, allowing more strategic
tracking of mobile targets, even in complex environments.
The benefits of eMAQL can be summarized as follows:
• Reduction in zigzag movements: Considering previous

actions, eMAQL allows UAVs to move more smoothly
and predictably, avoiding inefficient zigzag patterns.

• Improved power efficiency: The smoother movement
pattern significantly reduces the power used in frequent
direction changes, extending the operational time of
UAVs.

• Increased tracking accuracy: As UAVs are better able to
predict and adjust to the target’s movements, the overall
accuracy of target tracking is improved.

• Better adaptation to dynamic environments: eMAQL
enables UAVs to adapt more effectively to dynamic en-
vironments with constantly changing target movements,
thereby enhancing overall system performance.

E. Cluster Dynamics and Communication Protocols

In this work, we employ a swarm of UAVs organized
into clusters, each led by a CH. Throughout the target
tracking process, robust communication channels are es-
tablished between individual UAVs and their respective
CHs. For example, as the power of a UAV decreases to a
level lower than a predefined threshold, denoted PW (w),
the UAV autonomously triggers a warning signal directed
towards the nearby e/gNB and its CH. This warning sig-
nifies that the UAV has reached a critical power state and
requires replacement with a fresh UAV. Consequently, the
UAV optimizes its operations by deactivating nonessential
functions, subsequently relying on the CH to relay target
location information. Upon receiving a warning message
from a UAV, the EN assumes the responsibility of iden-
tifying a replacement UAV from its available pool and
dispatching the newly assigned UAV to take the place of
the one that triggered the warning. Furthermore, should
a UAV’s power level drop below a critical threshold
represented as PW (e), the UAV will promptly transmit
an error message to both its CH and the neighboring EN.
This signal indicates that the UAV has depleted its power
reserves to a point where it can no longer support the
tracking operation and must initiate a controlled landing

Figure 6: 3D urban environment with buildings as obsta-
cles.

Table I: Simulation setup parameters

Parameter Value
Number of UAVs 3 (Black - Blue - Green)
Number of e/gNBs 2
Number of SNs 10 - 500
Target Start Coordinates (10,60)
Target End Coordinates (300,150)
Number of Obstacles 100
UAV Speed Range 0 - 5 m/s
Target Average Velocity 3 m/s (Red)
Action Space for UAVs 8
UAV Mass 4kg

procedure. Upon arrival or departure of a UAV in or out
of the cluster, the CH promptly disseminates a notification
message to inform the remaining UAVs within the cluster.
This message serves to keep all UAVs within the cluster
aware of changes in their group composition, ensuring
seamless coordination during target tracking operations.
This process ensures uninterrupted target tracking while
efficiently managing the UAV fleet’s power. Algorithm
5 outlines the replacement process of UAVs when their
power levels fall below critical thresholds, ensuring un-
interrupted target tracking while efficiently managing the
power resources of the UAV fleet.

VI. Numerical Experiments

In this work, our goal is to reduce the power consump-
tion and delay while improving the accuracy and overall
performance of our tracking system. To this end, we com-
pute several important factors: Root Mean Square Error
(RMSE), measured in meters, quantifies tracking accuracy
by evaluating the precision of the estimated target posi-
tions; power consumption, quantifying the power used by
UAVs during tracking; communication latency, assessing
the communication time between UAVs and the e/gNBs;
and collision avoidance, evaluating the effectiveness of
our strategy in preventing collisions with obstacles and
other UAVs. We also present the results of our simulations
and discuss the performance of PF, enhanced PF (ePF),
MAQL, and eMAQL.

Soleymani S.A. et al.: Target Tracking 15

0 50 100 150 200 250 300 350

x(m)

0

20

40

60

80

100

120

140

160

180

200

y(
m

)

True Target Path

Particle Filter (Classic)

Particle Filter (Enhanced)

Figure 7: Particle history: PF vs ePF

0 50 100 150

Time Steps

0

5

10

15

20

25

30

35

R
M

SE

Particle Filtering (Classic)

Particle Filtering (Enhanced)

Figure 8: RMSE comparison: PF vs ePF

A. Simulation Setup

In this section, we outline the simulation setup used to
assess the performance of our proposed algorithms: PF,
MAQL, and eMAQL. The simulations were carried out
using MATLAB and Simulink on a laptop with an 11th
Gen Intel Core i7-1165G7 processor and 16GB of RAM.
We modeled a 3D urban environment with randomly
placed targets and obstacles, including buildings, streets,
and open areas, as shown in Figure 6. The targets followed
different paths generated by a path planning algorithm
to avoid collisions with obstacles, which included fixed
structures (buildings) and dynamic ones (such as other
UAVs). The system includes a single target, represented in
Red, which is tracked by multiple UAVs shown in Black,
Blue, and Green, along with two e/gNBs and 10-500 SNs
deployed in an environment containing 100 cylindrical
obstacles. The UAVs operate at speeds ranging from 0
to 5 m/s, while the target moves along a trajectory from
coordinates (10,60) to (300,150) at an average speed of 3
m/s. Each UAV weighs 4 kg, and the eMAQL algorithm
uses an action space of {4, 8, 12, 36} distinct actions.
Table I details the simulation parameters.

B. Analysis the PF-based Localization Algorithm

Here, we implemented a classical PF algorithm and
compared it with the ePF algorithm in terms of RMSE
to evaluate their effectiveness in target localization. The
key difference between classical PF and ePF lies in
the number of particles, noise handling, and resampling
strategy. ePF uses more particles, reduces noise, and
applies a smarter resampling threshold. The results ob-
tained illustrated in Figures 7 and 8 show that the ePF
significantly outperforms the classical PF, achieving a
lower RMSE in various scenarios. This improvement can
be attributed to the increase in the number of parti-
cles, reduced measurement noise, and a more sophis-
ticated resampling strategy used in ePF. Consequently,
the enhanced algorithm provides a more accurate and
reliable estimate of the target’s position, demonstrating
its suitability for applications requiring precise tracking
in dynamic environments.

C. Analysis and Comparison MAQL and eMAQL

In this section, we analyze and compare the per-
formance of the MAQL and eMAQL algorithms imple-
mented in terms of UAV trajectories, tracking accuracy
(measured by RMSE) and power consumption. As shown
in Figures 9a and 9b, the use of eMAQL significantly
reduces the number of direction changes, or zigzag move-
ments, made by UAVs. This reduction has a direct impact
on power consumption, as highlighted in Figure 9c, where
the power consumed by UAVs drops to around 60W when
using eMAQL, compared to the higher consumption with
MAQL. Furthermore, Figure 9d illustrates that the zigzag
movement also affects the RMSE, which reflects the
accuracy of the target tracking. Although the maximum
RMSE for both MAQL and eMAQL is approximately
0.45, which is relatively low, eMAQL demonstrates im-
proved performance in terms of accuracy. The improved
performance of eMAQL is due to its ability to optimize
decision-making using historical trajectory adjustments,
reducing unnecessary repositioning, and improving move-
ment efficiency. As explained in Section V.D, eMAQL in-
herently aligns with the POMDP framework and accounts
for past actions, leading to smoother UAV motion, more
accurate tracking, and lower energy consumption. These
enhancements ensure that UAVs maintain an optimal
balance between tracking accuracy and power efficiency,
making eMAQL a more effective solution for real-world
UAV tracking applications.

D. Analysis eMAQL with Different Number of Actions

In this section, we analyze the performance of eMAQL
by using different action spaces: {4, 8, 12, 36} actions.
Figure 10 presents the UAV trajectories for each action
space. It is clear that the accuracy of the eMAQL tracking
improves as the number of actions increases from 4 to
8, 12, and 36. However, there is minimal difference in
performance between eMAQL with 8, 12, and 36 actions.
The UAVs’ directional changes are also similar when
using these higher numbers of actions, with little impact
on the overall movement patterns. Additionally, the figure
shows that eMAQL performs well in avoiding collisions,
as the UAVs successfully navigate around obstacles with-
out hitting them.

16 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. , No.

(a) Trajectory - MAQL (b) Trajectory - eMAQL

1 (Green) 2 (Blue) 3 (Black)

UAV

0

20

40

60

80

100

120

140

160

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

W
)

MAQL

eMAQL

(c) Power consumption

100 200 300 400 500 600 700 800 900 1000

Time Steps

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
M

S
E

MAQL

eMAQL

X 568

Y 0.080251

(d) RMSE

Figure 9: Comparison of MAQL and eMAQL in terms of trajectory, power consumption, and RMSE.

(a) 4 Actions (b) 8 Actions (c) 12 Actions (d) 36 Actions

Figure 10: Target and UAV trajectories using eMAQL with 4, 8, 12, and 36 actions.

Furthermore, Figure 11a compares the power con-
sumption of the UAVs for different action spaces. We
observe that power consumption for 4 and 8 actions is
nearly the same, while the use of 12 or 36 actions results
in a slight increase of approximately 10W. This increase
occurs because a larger action space requires more fre-
quent decision-making and adjustments, leading to higher
energy usage. However, the difference in power consump-
tion remains small, making the additional computational
complexity of higher action spaces unnecessary. In terms
of accuracy, as shown in Figure 11b, we observed that
the performance remains quite similar in 4, 8, 12, and
36 actions, with no significant improvement beyond 8
actions. When it comes to the computation time to track
the target during its movement, as seen in Figure 11c,
we find that it remains around 100 seconds for 4, 8, and
12 actions. However, it increases significantly to 455.29
seconds when using 36 actions in the eMAQL algo-
rithm. Therefore, after considering the accuracy, power
consumption, and computational efficiency tracking, we
conclude that using eMAQL with 8 actions strikes the
best balance between performance and resource usage.

E. Analysis The Impact of Open RAN on Target
Tracking

In this section, we analyze the impact of RIC in the
Open RAN environment on UAV-based target tracking.
The open RAN network offers significant advantages over
traditional cloud and edge computing when it comes to
reducing latency in real-time applications, such as UAV-
based target tracking. In cloud computing, UAVs must

transmit their data to a centralized server, where compu-
tations such as target localization and trajectory planning
are performed. Although cloud computing provides high
processing power, it introduces significant delays due to
long-distance data transmission. Edge computing aims
to reduce this delay by processing data closer to the
source. In edge computing, computations occur at the
network edge, such as on edge servers located near UAVs.
Although this architecture reduces latency compared to
cloud computing, it still involves intermediate processing
steps, resulting in higher communication and computation
delays than Open RAN. In cloud and edge computing,
communication between UAVs and cloud or edge servers
in an LTE/5G network is established through e/gNBs.

In the Open RAN environment, key decision-making
processes are decentralized, and components such as the
non/near-RT RIC and the r/xApps deployed in these
components are integrated into the RAN itself, allowing
the system to process data closer to the source with
minimal delay.By eliminating the need for intermediate
nodes and central servers, Open RAN achieves much
lower latency than cloud or edge computing architectures.
This reduction in communication delay, which can be
as low as 10-20 milliseconds, makes Open RAN ideal
for applications where real-time responsiveness is critical,
such as UAV coordination and target tracking. In our
simulations, Open RAN allowed UAVs to adjust their tra-
jectories almost instantaneously, significantly improving
the accuracy and performance of the tracking system.

As shown in Figure 12, the results obtained clearly
highlight the performance advantages of Open RAN over
edge and cloud computing in terms of reducing latency

Soleymani S.A. et al.: Target Tracking 17

1 (Green) 2 (Blue) 3 (Black)

UAV

0

20

40

60

80

100

120

140

P
o

w
e
r

C
o

n
s
u

m
p

ti
o

n
 (

W
)

eMAQL - 4 Actions

eMAQL - 8 Actions

eMAQL - 12 Actions

eMAQL - 36 Actions

(a) Power Consumption Comparison

0 100 200 300 400 500 600 700 800 900 1000

Time Steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M

S
E

eMAQL - 4 Actions

eMAQL - 8 Actions

eMAQL - 12 Actions

eMAQL - 36 Actions

(b) RMSE Comparison

4 Actions 8 Actions 12 Actions 36 Actions
0

50

100

150

200

250

300

350

400

450

500

T
o

ta
l
C

o
m

p
u

ta
ti

o
n

 T
im

e
 (

S
e
c
)

eMAQL

(c) Total Computation Time

Figure 11: Comparison eMAQL with different actions 4, 8, 12, and 36.

and improving the accuracy of target tracking. The sim-
ulation demonstrates that the Open RAN-based system
consistently outperforms the cloud and edge/fog systems,
especially as the number of UAVs increases. RMSE val-
ues are significantly lower in Open RAN, indicating better
accuracy in estimating the target position. Furthermore,
the communication delay in the Open RAN system is
nearly half that of the edge system and dramatically less
than that of the cloud-based approach. These results jus-
tify our choice of Open RAN as the preferred architecture
for this UAV-based target tracking system, proving its
ability to efficiently support real-time operations.

F. Analysis the Impact of Task Offloading

Task offloading plays an important role in reducing
the power consumption of UAVs. In a no-offloading
scenario, UAVs need to handle all computational tasks
on their own, which leads to higher power usage. For
example, in our model with eMAQL using 8 actions, each
UAV consumes about 90 watts during the entire tracking
process. This power consumption results from the UAVs
running algorithms, processing data, and staying in con-
stant communication with e/gNBs, all of which heavily
use the UAVs’ limited onboard resources.

On the other hand, partial offloading allows UAVs to
send some of their computational tasks to the e/gNBs,
reducing their local workload and saving power. In this
case, only half of the tasks are done locally, lowering
the power consumption to 40 watts, plus an additional
10 watts for managing communication. When all tasks
are fully offloaded to e/gNB, the UAVs only need to
handle communication, resulting in a much lower power
consumption of around 15 watts per UAV (see Figure
13). This shows that offloading tasks, whether partially
or fully, can greatly decrease the power used by UAVs,
making them more energy efficient for longer missions.

Task offloading also affects the accuracy of the track-
ing, mainly due to communication delays between UAVs
and e/gNBs. As UAVs rely on external computation,
delays in processing and returning results can lead to
outdated target position estimates, reducing tracking pre-
cision. As shown in Figure 13, partial offloading main-

tains a good balance between energy efficiency and track-
ing accuracy, with only a minor increase in RMSE. In
fully offloaded scenarios, where all computational tasks
are processed externally, RMSE increases significantly
as UAVs receive delayed updates, making it harder to
precisely adjust their flight paths in real time. On the other
hand, while RMSE in the no-offloading scenario is lower
compared to partial and full offloading, it results in faster
power depletion, requiring UAV replacement, which may
disrupt target tracking.

G. Comparative Analysis of eMAQL, CRLB, and DRL

In this section, we compare the performance of the
eMAQL with eight actions, the Cramér-Rao Lower Bound
(CRLB) and Deep Reinforcement Learning (DRL) algo-
rithms in terms of RMSE for target tracking. The CRLB is
a theoretical lower bound on the variance of an unbiased
estimator that defines the best possible accuracy that any
estimator can achieve. The DRL utilizes a deep Q-network
to handle a continuous state space with a discrete action
set while incorporating a particle filter to estimate mul-
tiple target states. The eMAQL algorithm, as discussed
earlier, has demonstrated strong performance in tracking
accuracy due to its ability to efficiently manage the UAV’s
action space and minimize unnecessary movements like
zigzag patterns. DRL has also shown potential in tracking
tasks, but its performance lags slightly behind eMAQL
due to the higher complexity in decision making and
training.

Figure 14 illustrates the RMSE comparison between
CRLB, eMAQL with 8 actions, and DRL over time. As
expected, CRLB achieves the lowest RMSE, indicating
the best tracking accuracy in all time steps. eMAQL
follows closely, with RMSE values consistently approach-
ing the CRLB results, proving that our algorithm ef-
ficiently tracks the target with minimal error. On the
other hand, DRL shows relatively higher RMSE values
compared to both CRLB and eMAQL, but remains close
to our proposed eMAQL model. The difference in per-
formance between DRL and eMAQL comes from DRL’s
time-consuming training process and complex state-space
representations, which make real-time UAV adjustments

18 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. , No.

0 10 20 30 40 50 60 70 80 90 100

Sample Points

0

50

100

150

L
a
te

n
c
y
 (

m
s
)

Cloud Avg: 99.37 ms

Edge Avg: 50.60 ms

Open RAN Avg: 15.45 ms

Cloud Computing

Edge/Fog Computing

Open RAN

Figure 12: Open-RAN vs
Edge/Cloud.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

R
M

S
E

 (
m

)

No Offloading P. Offloading F. Offloading
0

50

100

150

200

250

300

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

W
/S

e
c

)

Power Consumption

Tracking Accuracy (RMSE)

Figure 13: All task offloading strate-
gies.

0 10 20 30 40 50 60 70 80 90 100

Time Steps

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
M

S
E

CRLB

eMAQL - 8 Actions

DRL

Figure 14: CRLB vs eMAQL vs
DRL.

more difficult. DRL relies on deep neural networks that
require extensive training and continuous weight updates,
making learning much slower than eMAQL. Additionally,
DRL processes high-dimensional state representations,
increasing computational complexity and decision de-
lays. In contrast, eMAQL efficiently updates values with
simpler state representations, allowing UAVs to adapt
faster and achieve better tracking performance in dynamic
environments.

The comparison confirms that eMAQL with 8 actions
achieves a balance between computational efficiency and
tracking accuracy, making it highly suitable for practical
applications in dynamic environments with limited re-
sources. DRL, while effective, has higher computational
demands and is less efficient than eMAQL in real-time
tracking scenarios. Based on this analysis, eMAQL proves
to be an effective and near-optimal solution for UAV-
based target tracking.

H. Impact of Varying Reference Power Levels (PL0)

Here, we analyze the effect of varying the PL0 on the
localization of the target. As shown in Figure 15, assum-
ing a fixed PL0 leads to an RMSE of 1.44 meters, while
incorporating real-world variations in PL0 increases the
RMSE to 1.63 meters. This outcome, a relatively small
difference in RMSE, indicates that the fixed assumption
PL0 used in our work is a reasonable approximation, as
it is not far from the range of variations observed under
real-world conditions. For this study, we set PL0 = 61
dB and PTX = 33 dBm, based on realistic vehicular
communication settings. The reference power level at 1
meter,PL0 = 20 log10

(
4πfd

c

)
, is derived from the 28 GHz

free-space path loss model and the speed of light c, which
are widely used in vehicular and urban communication
systems. PTX is also aligned with standard values for
Vehicle-to-Everything (V2X) communication, ensuring a
realistic representation of RF signal behavior in dense
urban environments.

VII. Conclusion

This study has presented a robust framework for
tracking targets in complex urban environments, success-

0 10 20 30 40 50 60 70 80 90 100

Time Steps

0

0.5

1

1.5

2

2.5

3

3.5

4

R
M

S
E

 (
m

et
er

s)

Fixed PL
0

Varying PL
0

Figure 15: Fixed PL0 vs varying PL0

fully demonstrating the effective integration of mobile
sensor nodes and UAVs within an Open-RAN archi-
tecture. The findings reveal that the eMAQL algorithm
optimally operates with 8 actions, achieving an average
power consumption of approximately 90 watts while
maintaining RMSE to estimate the target position be-
low 0.5 m. This also highlighted the potential of our
approach to effectively balance power efficiency and
tracking accuracy. Future work will focus on further
refining the eMAQL algorithm to enhance its adapt-
ability to dynamic urban conditions and exploring the
incorporation of real-time data from additional sensor
modalities to improve tracking reliability. In addition, our
objective is to investigate the scalability of the proposed
framework in larger urban settings and its applicabil-
ity to other applications, such as disaster response and
search and rescue missions. We provide public access to
the code here: https://github.com/ahmadsoleymani/UAV-
target-tracking.git.

References

[1] X. Chen, Z. Feng, Z. Wei, F. Gao, and X. Yuan, “Performance
of joint sensing-communication cooperative sensing UAV net-
work,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 12, pp. 15 545–15 556, 2020.

[2] H. Oh, S. Kim, H.-s. Shin, and A. Tsourdos, “Coordinated standoff
tracking of moving target groups using multiple UAVs,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 51,
no. 2, pp. 1501–1514, 2015.

Soleymani S.A. et al.: Target Tracking 19

[3] J. Moon, S. Papaioannou, C. Laoudias, P. Kolios, and S. Kim,
“Deep reinforcement learning multi-UAV trajectory control for
target tracking,” IEEE Internet of Things Journal, vol. 8, no. 20,
pp. 15 441–15 455, 2021.

[4] A. Guerra, D. Dardari, and P. M. Djuric, “Dynamic radar net-
works of UAVs: A tutorial overview and tracking performance
comparison with terrestrial radar networks,” IEEE Vehicular
Technology Magazine, vol. 15, no. 2, pp. 113–120, 2020.

[5] D. Huo, L. Dai, R. Chai, R. Xue, and Y. Xia, “Collision-free model
predictive trajectory tracking control for UAVs in obstacle
environment,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 59, no. 3, pp. 2920–2932, 2022.

[6] X. Jiang, N. Li, Y. Guo, D. Yu, and S. Yang, “Localization of
multiple rf sources based on bayesian compressive sensing
using a limited number of UAVs with airborne RSS sensor,”
IEEE Sensors Journal, vol. 21, no. 5, pp. 7067–7079, 2020.

[7] S. A. H. Mohsan, N. Q. H. Othman, Y. Li, M. H. Alsharif, and
M. A. Khan, “Unmanned aerial vehicles (UAVs): Practical as-
pects, applications, open challenges, security issues, and future
trends,” Intelligent Service Robotics, vol. 16, no. 1, pp. 109–
137, 2023.

[8] K. Meng, Q. Wu, J. Xu, W. Chen, Z. Feng, R. Schober, and
A. L. Swindlehurst, “UAV-enabled integrated sensing and
communication: Opportunities and challenges,” IEEE Wireless
Communications, 2023.

[9] D. Yuan, X. Chang, Z. Li, and Z. He, “Learning adaptive spatial-
temporal context-aware correlation filters for UAV tracking,”
ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMM), vol. 18, no. 3, pp. 1–18, 2022.

[10] M. Park, S. An, J. Seo, and H. Oh, “Autonomous source search for
UAVs using gaussian mixture model-based infotaxis: Algorithm
and flight experiments,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 57, no. 6, pp. 4238–4254, 2021.

[11] J. Cui, Y. Liu, and A. Nallanathan, “Multi-agent reinforcement
learning-based resource allocation for UAV networks,” IEEE
Transactions on Wireless Communications, vol. 19, no. 2, pp.
729–743, 2019.

[12] J. Yu, X. Liu, Y. Gao, and X. Shen, “3D channel tracking for
UAV-satellite communications in space-air-ground integrated
networks,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 12, pp. 2810–2823, 2020.

[13] Y. Lun, H. Wang, J. Wu, Y. Liu, and Y. Wang, “Target search
in dynamic environments with multiple solar-powered UAVs,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 9, pp.
9309–9321, 2022.

[14] H. Wu, H. Li, R. Xiao, and J. Liu, “Modeling and simulation of
dynamic ant colony’s labor division for task allocation of UAV
swarm,” Physica A: Statistical Mechanics and its Applications,
vol. 491, pp. 127–141, 2018.

[15] Y.-J. Chen, D.-K. Chang, and C. Zhang, “Autonomous tracking
using a swarm of UAVs: A constrained multi-agent rein-
forcement learning approach,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 11, pp. 13 702–13 717, 2020.

[16] S. Li, X. Yang, X. Wang, D. Zeng, H. Ye, and Q. Zhao, “Learning
target-aware vision transformers for real-time UAV tracking,”
IEEE Transactions on Geoscience and Remote Sensing, 2024.

[17] S. A. Soleymani, M. Shojafar, C. H. Foh, S. Goudarzi, and
W. Wang, “Secure target-tracking by UAVs in O-RAN environ-
ment,” in 2024 IFIP Networking Conference (IFIP Networking).
IEEE, 2024, pp. 204–212.

[18] H. Sallouha, M. M. Azari, A. Chiumento, and S. Pollin, “Aerial an-
chors positioning for reliable RSS-based outdoor localization in
urban environments,” IEEE Wireless Communications Letters,
vol. 7, no. 3, pp. 376–379, 2017.

[19] X. Li, “RSS-based location estimation with unknown pathloss
model,” IEEE Transactions on Wireless Communications, vol. 5,
no. 12, pp. 3626–3633, 2006.

[20] S. Papaioannou, S. Kim, C. Laoudias, P. Kolios, S. Kim,
T. Theocharides, C. Panayiotou, and M. Polycarpou, “Coordi-

nated CRLB-based control for tracking multiple first responders
in 3D environments,” in Proceedings of the International Con-
ference on Unmanned Aircraft Systems (ICUAS). IEEE, 2020,
pp. 1475–1484.

[21] N. Zhou, D. Meng, and S. Lu, “Estimation of the dynamic states of
synchronous machines using an extended particle filter,” IEEE
Transactions on Power Systems, vol. 28, no. 4, pp. 4152–4161,
2013.

[22] S. S. Dias and M. G. Bruno, “Cooperative target tracking using
decentralized particle filtering and RSS sensors,” IEEE Trans-
actions on Signal Processing, vol. 61, no. 14, pp. 3632–3646,
2013.

[23] J. Fan, Z. Wang, Y. Xie, and Z. Yang, “A theoretical analysis
of deep Q-learning,” in Learning for dynamics and control.
PMLR, 2020, pp. 486–489.

[24] R. S. Sutton and A. G. Barto, “Reinforcement learning: An
introduction,” Robotica, vol. 17, no. 2, pp. 229–235, 1999.

[25] T. Zhang, Y. Xu, J. Loo, D. Yang, and L. Xiao, “Joint computa-
tion and communication design for UAV-assisted mobile edge
computing in iot,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 8, pp. 5505–5516, 2019.

[26] X. Gu, G. Zhang, M. Wang, W. Duan, M. Wen, and P.-H. Ho,
“UAV-aided energy-efficient edge computing networks: Secu-
rity offloading optimization,” IEEE Internet of Things Journal,
vol. 9, no. 6, pp. 4245–4258, 2021.

[27] H. V. Abeywickrama, B. A. Jayawickrama, Y. He, and
E. Dutkiewicz, “Empirical power consumption model for
UAVs,” in 2018 IEEE 88th Vehicular Technology Conference
(VTC-Fall). IEEE, 2018, pp. 1–5.

[28] H. Ren and M. Q.-H. Meng, “Power adaptive localization algo-
rithm for wireless sensor networks using particle filter,” IEEE
Transactions on Vehicular Technology, vol. 58, no. 5, pp. 2498–
2508, 2008.

[29] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman
filter: Particle filters for tracking applications. Artech house,
2003.

[30] S. Goudarzi, S. A. Soleymani, W. Wang, and P. Xiao, “UAV-
enabled mobile edge computing for resource allocation using
cooperative evolutionary computation,” IEEE Transactions on
Aerospace and Electronic Systems, 2023.

[31] Y. Lai, Y. L. Che, S. Luo, and K. Wu, “Optimal wireless informa-
tion and energy transmissions for UAV-enabled cognitive com-
munication systems,” in 2018 IEEE International Conference on
Communication Systems (ICCS). IEEE, 2018, pp. 168–172.

[32] X. Liu, Y. Liu, Y. Chen, and L. Hanzo, “Trajectory design and
power control for multi-UAV assisted wireless networks: A
machine learning approach,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 8, pp. 7957–7969, 2019.

[33] H. Sun, B. Zhang, X. Zhang, Y. Yu, K. Sha, and W. Shi, “FlexEdge:
Dynamic task scheduling for a UAV-based on-demand mobile
edge server,” IEEE Internet of Things Journal, vol. 9, no. 17,
pp. 15 983–16 005, 2022.

[34] G. An, Z. Wu, Z. Shen, K. Shang, and H. Ishibuchi, “Evolutionary
multi-objective deep reinforcement learning for autonomous
UAV navigation in large-scale complex environments,” in Pro-
ceedings of the Genetic and Evolutionary Computation Confer-
ence, 2023, pp. 633–641.

[35] J. Zhang, Z. Shi, A. Zhang, Q. Yang, G. Shi, and Y. Wu, “UAV
trajectory prediction based on flight state recognition,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 60,
no. 3, pp. 2629–2641, 2023.

[36] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning
and acting in partially observable stochastic domains,” Artificial
intelligence, vol. 101, no. 1-2, pp. 99–134, 1998.

[37] Y. Xue and W. Chen, “A UAV navigation approach based on deep
reinforcement learning in large cluttered 3D environments,”
IEEE Transactions on Vehicular Technology, vol. 72, no. 3, pp.
3001–3014, 2022.

20 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. , No.

	INTRODUCTION
	Related Work
	Preliminaries
	System Model
	Integration of Particle Filtering Algorithm and RSS
	Multi-Agent Q-learning Algorithm
	Offloading Strategy

	Problem Formulation
	Tracking Accuracy
	Power Consumption
	Delay

	Our Approach: Design of an Approach for Target Tracking by Multi-UAVs
	PF-based Localization Algorithm
	UAV Swarm Selection by e/gNB
	Our Multi-Agent Q-learning Algorithm
	Enhanced-MAQL (eMAQL)
	Cluster Dynamics and Communication Protocols

	Numerical Experiments
	Simulation Setup
	Analysis the PF-based Localization Algorithm
	Analysis and Comparison MAQL and eMAQL
	Analysis eMAQL with Different Number of Actions
	Analysis The Impact of Open RAN on Target Tracking
	Analysis the Impact of Task Offloading
	Comparative Analysis of eMAQL, CRLB, and DRL
	Impact of Varying Reference Power Levels (PL_0)

	Conclusion
	References

